1. Computation of a Jacobian matrix and use of chain rule.

(a) Compute $J f(r, \theta)$ and its determinant for

$$
\begin{aligned}
f: \quad \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(r, \theta) & \mapsto(r \cos \theta, r \sin \theta) .
\end{aligned}
$$

When is $d f(r, \theta)$ invertible?
(b) Define

$$
\begin{aligned}
& g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \quad(x, y) \mapsto\left(1, x y, x^{2} y^{2}\right) .
\end{aligned}
$$

What is the derivative of $g \circ f$ at $(r=2, \theta=\pi / 4)$?
2. Special cases of chain rule. Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ be two differentiable functions and $c \in \mathbb{R}^{p}$.
(a) If $n=q=1$, express $\nabla(g \circ f)(c)$ in terms of g^{\prime} and ∇f.

Hint: use that $\forall t,<\nabla(g \circ f)(c), t>=d(f \circ g)(c)$.t and the chain rule.
(b) If $p=q=1$, express $d f(c) . t$ in terms of $f^{\prime}(c)$ and $(g \circ f)^{\prime}(c)$ in terms of ∇g and $f^{\prime}(c)$, where $f^{\prime}(c):=\left(f_{1}^{\prime}(c), \ldots, f_{n}^{\prime}(c)\right)$.
— Problems -
3. Norm on the set of linear maps $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. For a linear map A with matrix $\left(a_{i j}\right)_{i, j}$, define $\|A\|:=\sqrt{\sum_{i, j} a_{i j}^{2}}$. This is a norm on the vector space $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Show that for all A and B, $\|A B\| \leq\|A\|\|B\|$. Show that for fixed B, the map $A \mapsto A B$ is continuous.
4. Derivative of "taking the inverse". Let $G L_{n}(\mathbb{R}) \subset \mathbb{R}^{n \times n}$ denote the set of invertible $n \times n$ matrices. We use the norm above, i.e., we identify $\mathbb{R}^{n \times n}$ to $\mathbb{R}^{n^{2}}$ with its Euclidean norm.
(a) Justify that $G L_{n}(\mathbb{R})$ is open.
(b) Let $I_{n} \in G L_{n}(\mathbb{R})$ be the identity matrix. Show that if T is a matrix with small enough coefficients,

$$
\left(I_{n}+T\right)^{-1}=\sum_{k=0 \ldots \infty}(-1)^{k} T^{k}
$$

(c) Let

$$
\begin{aligned}
& \psi: G L_{n}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{R}) \\
& A \quad \mapsto A^{-1}
\end{aligned}
$$

Show that ψ is differentiable at I_{n} and compute its derivative.
(d) Let $A \in G L_{n}(\mathbb{R})$. Show that ψ is differentiable at A and compute its derivative. Compare with $\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}$!

