- Exercises -

1. Computation of a Jacobian matrix and use of chain rule.

(a) Compute $Jf(r, \theta)$ and its determinant for

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(r, \theta) \mapsto (r \cos \theta, r \sin \theta).$$

When is $df(r, \theta)$ invertible?

(b) Define

$$g: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (1, xy, x^2 y^2).$$

What is the derivative of $g \circ f$ at $(r = 2, \theta = \pi/4)$?

- 2. Special cases of chain rule. Let $f : \mathbb{R}^p \to \mathbb{R}^n$ and $g : \mathbb{R}^n \to \mathbb{R}^q$ be two differentiable functions and $c \in \mathbb{R}^p$.
 - (a) If n = q = 1, express $\nabla(g \circ f)(c)$ in terms of g' and ∇f . Hint: use that $\forall t, < \nabla(g \circ f)(c), t >= d(f \circ g)(c)$.t and the chain rule.
 - (b) If p = q = 1, express df(c).t in terms of f'(c) and $(g \circ f)'(c)$ in terms of ∇g and f'(c), where $f'(c) := (f'_1(c), \dots, f'_n(c))$.

- Problems -

- 3. Norm on the set of linear maps $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. For a linear map A with matrix $(a_{ij})_{i,j}$, define $||A|| := \sqrt{\sum_{i,j} a_{ij}^2}$. This is a norm on the vector space $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. Show that for all A and B, $||AB|| \le ||A|| ||B||$. Show that for fixed B, the map $A \mapsto AB$ is continuous.
- 4. **Derivative of "taking the inverse".** Let $GL_n(\mathbb{R}) \subset \mathbb{R}^{n \times n}$ denote the set of invertible $n \times n$ matrices. We use the norm above, i.e., we identify $\mathbb{R}^{n \times n}$ to \mathbb{R}^{n^2} with its Euclidean norm.
 - (a) Justify that $GL_n(\mathbb{R})$ is open.
 - (b) Let *I_n* ∈ *GL_n*(ℝ) be the identity matrix. Show that if *T* is a matrix with small enough coefficients,

$$(I_n + T)^{-1} = \sum_{k=0...\infty} (-1)^k T^k$$

(c) Let

$$\psi: GL_n(\mathbb{R}) \to GL_n(\mathbb{R}) \ .$$

 $A \mapsto A^{-1}$

Show that ψ is differentiable at I_n and compute its derivative.

(d) Let $A \in GL_n(\mathbb{R})$. Show that ψ is differentiable at A and compute its derivative. Compare with $(\frac{1}{x})' = -\frac{1}{x^2}!$